DECISION SUPPORT SYSTEMS IN NAVIGATION: CURRENT STATE AND PROSPECTS FOR FURTHER DEVELOPMENT
https://doi.org/10.33815/2313-4763.2024.1.28.152-162
Abstract
The article is devoted to issues of creation, application and development of decision support systems (DSS) in the field of shipping. The main areas of use of DSS and artificial intelligence systems in the maritime industry are considered. The classification of existing DSS in the field is carried out, the peculiarities of the construction of such systems are shown. The classes of practical problems that can be successfully solved with the use of DSS are defined. The methodological foundations of the creation and implementation of DSS in navigation are considered. It is shown that the effective application of the DSS is possible only under the conditions of the harmonized development of all components that ensure the processes of creation, introduction, development and improvement of such systems - the life cycle of the DSS. The structure of the DSS life cycle was developed and approaches to the practical implementation of each of its stages were proposed. The specific features of decision-making processes in navigation and the features of information perception and decision-making by the shipmaster are determined. The structure of the cycle of information interaction of the decision-maker and the DSS was analyzed, and its separate phases were determined. The perspective of using the model of a decision-maker in the DSS is shown in order to increase the efficiency of information exchange processes. A number of problematic issues that arise during the practical implementation of the DSS in navigation are identified and the ways of their possible solution are determined. Approaches to improving the processes of creation and application of DSS in practice have been proposed. The priority directions for the use of DSS and artificial intelligence systems in ship navigation and the prospects for their further development have been determined.
References
2. Ben, A. P., Palamarchuk, Y. V. (2015). Pryntsypы postroenyia system podderzhky pryniatyia reshenyia sudovodytelia v ramkakh kontseptsyy e-Navigation. Naukovyi visnyk Khersonskoi derzhavnoi morskoi akademii. № 2 (13). S. 19–24.
3. Vahushchenko, L. L. (2016). Sudovыe navyhatsyonno-ynformatsyonnыe systemы. Odessa : NU “OMA”. 238 c.
4. Vahushchenko, L. L., Vahushchenko, A. L. (2010). Podderzhka reshenyi po raskhozhdenyiu s sudamy: Feniks. 229 s.
5. Palamarchuk, Y. V. (2016). Yspolzovanye system podderzhky pryniatyia reshenyi dlia povыshenyia эffektyvnosty y bezopasnosty sudokhodstva. Suchasni informatsiini ta innovatsiini tekhnolohii na transporti (MINTT-2016): materialy VIII Mizhnarodnoi naukovo-praktychnoi konferentsii, 24–26 travnia 2016 r. Kherson: KhDMA. S. 29–30.
6. Ben, A. P., Palamarchuk, I. V. (2019). Solving tasks of vessel collision avoidance and maneuvering during designing decision support systems of the navigator // New stages of development of modern science in Ukraine and EU countries : monograph / edited by authors. 3rd ed. Riga, Latvia : Baltija Publishing. Р. 58–77.
7. Lisowski, J. (2005). Dynamic games methods in navigator decision support system for safety navigation. Advances in Safety and Reliability. Vol. 2. Р. 1285–1292.
8. Lazarowska, A. (2016). A trajectory base method for ship’s safe path planning/ 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science 96, pp. 1022–1031.
9. Timchenko, V., Kondratenko, Y., Kreinovich, V. (2022). Decision Support System for the Safety of Ship Navigation Based on Optical Color Logic Gates // Information Technology and Implementation (IT&I-2022), pp. 42–52.
10. Krata, P., Kniat, A., Vettor, R., Krata, H., Guedes Soares, C. (2021). The Development of a Combined Method to Quickly Assess Ship Speed and Fuel Consumption at Different Powertrain Load and Sea Conditions. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. Vol. 15, № 2. Р. 437–444.
11. Cai, Y., Wen, Y.Q. (2014). Ship Route Design for Avoiding Heavy Weather and Sea Conditions. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. Vol. 8, № 4. Р. 551–556.
12. Palamarchuk, I. V. (2020). Modeliuvannia rozkhodzhennia suden v systemi pidtrymky pryiniattia rishen sudnovodiia. Naukovyi visnyk Khersonskoi derzhavnoi morskoi akademii. № 1 (22).S. 45–53.
13. Nikolskyi, V. V., Nikolskyi, M. V., Nakul, Yu. A. (2016). Systema pidtrymky pryiniattia rishen po zavantazhenniu velykotonnazhnoho konteinerovozu. Naukovi pratsi ChDU im. Petra Mohyly. Seriia: “Kompiuterni tekhnolohii”. Vyp. 271. T. 283. S. 60–63
14. Ben, A. P. (2012). Perspektyvy rozvytku system pidtrymky pryiniattia rishen sudnovodiia / Ben A. P. // Naukovyi visnyk Khersonskoi derzhavnoi morskoi akademii. Kherson : Vydavnytstvo KhDMA, № 1 (6). S. 12–19.
15. Ben, A. P. (2012). Kontseptualnыe osnovы sozdanyia system podderzhky pryniatyia reshenyi v sudovozhdenyy. Shtuchnyi intelekt. № 3. S. 222–227.
16. Ben, A. P., Maltsev, A. S. (2019). Systemы podderzhky pryniatyia reshenyi po upravlenyiu dvyzhenyem sudna // Monohrafiia. Kherson : Vydavnytstvo KhDMA. 244 s.
17. Yakusevych, Iu. H., Tryshyn, V. V., Dorofieieva, Z. Ia. (2021). Pobudova navihatsiinoi systemy sudna na osnovi suchasnykh informatsiinykh tekhnolohii. Kibernetyka ta systemnyi analiz. №4(70). C. 83–88.
18. Pietrzykowski, Z., Wołejsza, P., Borkowski, P. (2017). Decision support in collision situations at sea. J. Navig. Vol. 70. P. 447–464.
19. Dugan, S. A., Skjetne, R., Wróbel, K., Montewka, J., Gil, M., Utne, I. B. (2023). Integration Test Procedures for a Collision Avoidance Decision Support System Using STPA. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. Vol. 17, № 2. Р. 375–381.
20. Koyama, T. and Yan, J. (1987). An expert system approach to collision avoidance, 8th Ship Control System Symposium, Hague.
21. Polozhentsev, M. A., Shepetukha, Yu. M. (1987). Prymenenye dvukhэlementnыkh stratehyi raskhozhdenyia v эrhatycheskykh systemakh preduprezhdenyia stolknovenyi sudov //Kybernetyka y vыchyslytelnaia tekhnyka. №76. S. 19–21.
22. Smeaton, G., Coenen, F. (1990). Developing an intelligent marine navigation system. Computing & Control Engineering Journal. Vol. 1. Issue 2. P. 95–103. doi: 10.1049/cce:19900024.
23. Kebedow, K. G., Oppen, J. (2018). Including Containers with Dangerous Goods in the Multi-Port Master Bay Planning Problem. MENDEL. vol. 24. no. 2. Р. 23–36.
24. Solovey, O., Ben, A., Dudchenko, S., Nosov, P. (2020). Development of control model for loading operations on Heavy Lift vessels based on inverse algorithm. Eastern European Journal of Enterprise Technologies, 5/2 (107), p. 48–56.
25. Carlo, H. J., Vis, I. F. A., Roodbergen, K. J. (2014). Transport operations in container terminals: Literature overview, trends, research directions and classification scheme. European Journal of Operational Research. vol. 236, no. 1. Р. 1–13.
26. Rodriguez-Molins, M., Salido, M.A., Barber, F. (2012). Intelligent planning for allocating containers in maritime terminals. Expert Systems with Applications. Vol. 39(1). Р. 978–989.
27. Yishan, L., Zhiqiang, G., Jie, Y. (2018). et al. Prediction of ship collision risk based on CART. IET Intelligent Transport Systems. Vol. 12. Issue 10. pp. 1345–1350.
28. Leleko, N. V. (2018). Puty povыshenyia kachestva vzaymodeistvyia operatora s systemoi dynamycheskoho pozytsyonyrovanyia. Naukovyi visnyk Khersonskoi derzhavnoi morskoi akademii. № 1 (18). S. 27–33.
29. Nosov, P. S., Ben, A. P., Safonova, A. F., Palamarchuk, I. V. (2019). Approaches going to determination periods of the human factor of navigators during supernumerary situations. Науковий журнал «Радіоелектроніка, інформатика, управління». № 2 (49).
30. MacKinnon, S. N., Weber, R., Olindersson, F., and Lundh, M. (2020). Artificial Intelligence in Maritime Navigation: A Human Factors Perspective/In book: Advances in Human Aspects of Transportation, N. Stanton (Ed.): AHFE, AISC 1212, pp. 429–435.